China best Recoiler for Hot Rolled Strip with Great quality

Product Description

Mandrel of Pay-off Reel and Tension Reel

For hot rolling 
The mandrel is the key part of hot rolling tension reel for coils.; Coiling temperature is between 550 to 850ºC.; The mandrel has mainly 2 types:; link wedge type and double wedge type.;

Link wedge type can also be divided into 2 kinds:; link wedge-coupling drive and link-spline drive.;

For link wedge-coupling type tension reel,; the mandrel is mainly composed of mandrel body,; spreader bar,; segment,; link,; wedge and spreading cylinder.; Spreader bar has multistage slopes and segment is supported by multistage wedge.; Segment is connected with spreader bar by link so segment does not drop off.; With compression spring in the middle of wedge,; wedge can firmly contact segment and pyramid surface.; There is a gap between the upper surface of wedge and segment,; which can reduce the impact of coil head to mandrel during coiling coil.; Mandrel body is installed on 2 bearings.; Power is transmitted by crowned-teeth coupling in the real.; It is very convenient to dismantle,; and due to there is no gear impact during working,; mandrel rigidity is improved.; It’s very beneficial to control the dynamic tension.;

The spreading principle of mandrel:; spreader bar moves inside mandrel body in axial direction dreivern by hydraulic cylinder,; the slant of sperader bar pushes the wedge inside radial hole of mandrel body to move outward.; The wedge surface pushes segment to expand outward.; Wedge diameter will expand.; After coiling coils,; spreader bar moves in the opposite direction driven by hydraulic cylinder,; and pulls segment to shrink through link.; Wedge moves inward and mandrel diameter becomes smaller to discharge state.; Then you can begin to discharge coil.;

For the 2 types of link wedge-coupling drive and link wedge-spline drive,; the mandrel structures and principles are almost same and the main difference is drive type of mandrel.; For link wedge-spline drive type,; connection between mandrel and main transmission cases is spline,; i.;e.; insert type.; When mouting and dismantling,; mandrel can be directly inserted or pulled out of the main transmission cases to achieve the rapid replacement.;
The main driving motor drives gear shaft rotation through the intermediate shaft.; The gear shaft dirves big gear rotation,; and the big gear drives mandrel rotation through spline.;

For the double wedge type tension reel,; the mandrel is mainly composed of mandrel body,; spreader bar,; segment,; spreader wedge,; buffer wege and hyd.; Cylinder.;

The spreading principle of double wedge type mandrel:; hyd.; Cylinder makes spreader bar move back and forth in axial direction and the wedge move in radical direction.; So the segment becomes big.; T-hook on spreader bar pulls wedge back and the hook outside the wedge pulls segment back.; This will make the manderel small.; With spline connectiion for power transmission unit,; mandrel can be rapidly replaced.; Cooling water channel inside the mandrel,; so cooling effect is good.; Lubricant can be injected by auto and manual type,; so it can reduce parts wear.;

Pay-off reel and tension reel for cold rolling coils are used in cold rolling production line or pay-off when acid pickling,;galvanization,;annealing,;shear,;coating or coil tension in out let.;
Cold rolling mandrel is the key part of pay-off reel and tension reel.; According to different structure,; it has beam wedge type,; pyramid axis type,; pyramid sleeve type,; wedge type,; radial direction hydraulic cylinder type,; etc.; Or simply,; open type and close type.; The close type mandrel is a close circle without gap in the surface after expanding.;it is suitable for coiling thin strip steel.; The open type mandrel means there is a gap between segments after mandrel expanding,; suitable for coiling thicker strip steel.;
 
For cold rolling
Pay-off reel and tension reel for cold rolling coils are used in cold rolling production line or pay-off when acid pickling,; gavanization,; annealing,; shear,; coating or coil tension in outlet.;

Cold rolling mandrel is the key parts of pay-off reel&tension reel.; According to different structure,; it has beam wedge type,; pyramid axis type,; pyramid sleeve type,; wedge type,; radial direction hydraulic cylinder type,; ect.; Or simply,; open type and close type.; The close type mandrel is a close circle without gap in the surface after expanding.; It is suitable for coiling thin strip steel.; The open type mandrel means there are a gap between segment after mandrel expanding,; suitable for coiling thicker strip steel.;

The beam wedge type mandrel is mainly composed of the main shaft,; expanding core,; segment,; axial direction wedge,; radial direction wedge and spreading cylinder,; etc.; There are 2 kinds of structure:; with jaw or without jaw.; The mandrel with jaw is used for coiling thicker strip steel.; It can also be set with steel sleeve or paper sleeve to coil with belt wrapper.; The mandrel without jaw is used for coiling thin strip steel by belt wrapper.;

The mandrel will move along axial direction driven by the expanding core & wedge block,; through relative sliding between the wedge block and segment,; swelling and shrinking will occur in radial direction,; reset by spring.;

The pyramidal axis type mandrel is divided into tapper type and back taper type according to the tilting direction of axis slope.; This mandrel has simple structure ,;less parts,; large main shaft section and high strength .;So it can bear large tension,; not only coiling ,;but also uncoiling.; There are 2 kinds of structure:; with jaw or without jaw .;it’s mainly consisted of the pyramid axis,; segment,; hollow sleeve and spreading cylinder,; etc.;

Presently,; the back taper type mandrel is the most popular.; The oil goes into the cylinder via a rod cavity.; The cylinder pulls the pyramidal shaft backward along axial direction and push segment to expand outside,; so the drum is expanded.; Pyramidal axis moves back ward along axial direction,; and segment is pulled back by the T-key,; thus the mandrel is shrinked.;

The Functions of Splined Shaft Bearings

Splined shafts are the most common types of bearings for machine tools. They are made of a wide variety of materials, including metals and non-metals such as Delrin and nylon. They are often fabricated to reduce deflection. The tooth profile will become deformed with time, as the shaft is used over a long period of time. Splined shafts are available in a huge range of materials and lengths.

Functions

Splined shafts are used in a variety of applications and industries. They are an effective anti-rotational device, as well as a reliable means of transmitting torque. Other types of shafts are available, including key shafts, but splines are the most convenient for transmitting torque. The following article discusses the functions of splines and why they are a superior choice. Listed below are a few examples of applications and industries in which splines are used.
Splined shafts can be of several styles, depending on the application and mechanical system in question. The differences between splined shaft styles include the design of teeth, overall strength, transfer of rotational concentricity, sliding ability, and misalignment tolerance. Listed below are a few examples of splines, as well as some of their benefits. The difference between these styles is not mutually exclusive; instead, each style has a distinct set of pros and cons.
A splined shaft is a cylindrical shaft with teeth or ridges that correspond to a specific angular position. This allows a shaft to transfer torque while maintaining angular correspondence between tracks. A splined shaft is defined as a cylindrical member with several grooves cut into its circumference. These grooves are equally spaced around the shaft and form a series of projecting keys. These features give the shaft a rounded appearance and allow it to fit perfectly into a grooved cylindrical member.
While the most common applications of splines are for shortening or extending shafts, they can also be used to secure mechanical assemblies. An “involute spline” spline has a groove that is wider than its counterparts. The result is that a splined shaft will resist separation during operation. They are an ideal choice for applications where deflection is an issue.
A spline shaft’s radial torsion load distribution is equally distributed, unless a bevel gear is used. The radial torsion load is evenly distributed and will not exert significant load concentration. If the spline couplings are not aligned correctly, the spline connection can fail quickly, causing significant fretting fatigue and wear. A couple of papers discuss this issue in more detail.
splineshaft

Types

There are many different types of splined shafts. Each type features an evenly spaced helix of grooves on its outer surface. These grooves are either parallel or involute. Their shape allows them to be paired with gears and interchange rotary and linear motion. Splines are often cold-rolled or cut. The latter has increased strength compared to cut spines. These types of shafts are commonly used in applications requiring high strength, accuracy, and smoothness.
Another difference between internal and external splined shafts lies in the manufacturing process. The former is made of wood, while the latter is made of steel or a metal alloy. The process of manufacturing splined shafts involves cutting furrows into the surface of the material. Both processes are expensive and require expert skill. The main advantage of splined shafts is their adaptability to a wide range of applications.
In general, splined shafts are used in machinery where the rotation is transferred to an internal splined member. This member can be a gear or some other rotary device. These types of shafts are often packaged together as a hub assembly. Cleaning and lubricating are essential to the life of these components. If you’re using them on a daily basis, you’ll want to make sure to regularly inspect them.
Crowned splines are usually involute. The teeth of these splines form a spiral pattern. They are used for smaller diameter shafts because they add strength. Involute splines are also used on instrument drives and valve shafts. Serration standards are found in the SAE. Both kinds of splines can also contain a ball bearing for high torque. The difference between the 2 types of splines is the number of teeth on the shaft.
Internal splines have many advantages over external ones. For example, an internal spline shaft can be made using a grinding wheel instead of a CNC machine. It also uses a more accurate and economical process. Furthermore, it allows for a shorter manufacturing cycle, which is essential when splining high-speed machines. In addition, it stabilizes the relative phase between the spline and thread.
splineshaft

Manufacturing methods

There are several methods used to fabricate a splined shaft. Key and splined shafts are constructed from 2 separate parts that are shaped in a synchronized manner to transfer torque uniformly. Hot rolling is 1 method, while cold rolling utilizes low temperatures to form metal. Both methods enhance mechanical properties, surface finishes, and precision. The advantage of cold rolling is its cost-effectiveness.
Cold forming is 1 method, as well as machining and assembling. Cold forming is a unique process that allows the spline to be shaped to the desired shape. The resulting shape provides maximum contact area and torsional strength. Standard splines are available in standard sizes, but custom lengths can also be ordered. CZPT offers various auxiliary equipment, such as mating sleeves and flanged bushings.
Cold forging is another method. This method produces long splined shafts that are used in automobile propellers. After the spline portion is cut out, it is worked on in a hobbing machine. Work hardening enhances the root strength of the splined portion. It can be used for bearings, gears, and other mechanical components. Listed below are the manufacturing methods for splined shafts.
Parallel splines are the simplest of the splined shaft manufacturing methods. Parallel splines are usually welded to shafts, while involute splines are made of metal or non-metals. Splines are available in a wide variety of lengths and materials. The process is usually accompanied by a process called milling. The workpiece rotates to produce the serrated surface.
Splines are internal or external grooves in a splined shaft. They work in combination with keyways to transfer torque. Male and female splines are used in gears. Female and male splines correspond to 1 another to ensure proper angular correspondence. Involute splines have more surface area and thus are stronger than external splines. Moreover, they help the shaft fit into a grooved cylindrical member without misalignment.
A variety of other methods of manufacturing a splined shaft can be used to produce a splined shaft. Spline shafts can be produced using broaching and shaping, 2 precision machining methods. Broaching uses a metal tool with successively larger teeth to remove metal and create ridges and holes in the surface of a material. However, this process is expensive and requires special expertise.
splineshaft

Applications

The splined shaft is a mechanical component with a helix-like shape formed by the equal spacing of grooves in a circular ring. The splines can either have parallel or involute sides. The splines minimize stress concentration in stationary joints and can be used in both rotary and linear motion. In some cases, splines are rolled rather than cut. The latter is more durable than cut splines and is often used in applications requiring high strength, accuracy, and smooth finish.
Splined shafts are commonly made of carbon steel. This alloy steel has a low carbon content, making it easy to work with. Carbon steel is a great choice for splines because it is malleable. Generally, high-quality carbon steel provides a consistent motion. Steel alloys are also available that contain nickel, chromium, copper, and other metals. If you’re unsure of the right material for your application, you can consult a spline chart.
Splines are a versatile mechanical component. They are easy to cut and fit. Splines can be internal or external, with teeth positioned at equal intervals on both sides of the shaft. This allows the shaft to engage with the hub around the entire circumference of the hub. It also increases load capacity by creating a constant multiple-tooth point of contact with the hub. For this reason, they’re used extensively in rotary and linear motion.
Splined shafts are used in a wide variety of industries. CZPT Inc. offers custom and standard splined shafts for a variety of applications. When choosing a splined shaft for a specific application, consider the surrounding mated components, torque requirements, and size requirements. These 3 factors will make it the ideal choice for your rotary equipment. And you’ll be pleased with the end result!
There are many types of splines and their applications are endless. They transfer torque and angular misalignment between parts, and they also enable the axial rotation of assembled components. Therefore, splines are an essential component of machinery and are used in a wide range of applications. This type of shaft can be found in various types of machines, from household appliances to industrial machinery. So, the next time you’re looking for a splined shaft, make sure you look for a splined one.

China best Recoiler for Hot Rolled Strip     with Great qualityChina best Recoiler for Hot Rolled Strip     with Great quality