Tag Archives: spiral screw conveyor

China manufacturer Industrial CZPT Auger Spiral Flexible Screw Elevator Conveyor with Free Design Custom

Product Description

Introduction

Industrial Pipe Auger Spiral Flexible Screw Elevator/Conveyor is bulk material handling equipment, which usually consists of a tube containing either a spiral blade coiled around a shaft (sometimes called an auger), driven at 1 end and held at the other. The main parts include tube, shaft with spiral blades, inlet and outlet chutes, as well as driving device.
The closed pipe-type screw conveyor is a pipe with a shaft inside with welded screw blades and passive bearing. The screw’s blades have different pitch which depends on the type of the transported raw material and the planned capacity. This type of conveyor is closed, which means that the screw cannot be accessed directly. Due to the closed structure, the transported raw material does not spill outside the machine during transport.
The machine can be equipped with a pull screw. In this version, the drive unit is located in the direction of the raw material feeding. Some screw conveyors are equipped with push screws with gear motor installed on the feeding side. The screw conveyor is fitted with an initial or end bearing. Depending on the type of transported raw material, slide or bearing rests are installed.
Horizontal screw conveyor has the advantages of sealed operation, simple structure. screw conveyor suitable for conveying powdery, granular and small bulk materials horizontally or aslope, such as coal, ash, slag, cement, food, etc. screw conveyor is an new transportation equipment.

Features:

Simple structure, good sealing, large capacity, long service life
Convenient installation and maintenance, as well as easy operation.
Working temperature is -20~50ºC, with material temperature below 200 ºC.
Suitable for horizontal and slightly inclined transport of powdery, granular and small lump materials, such as coal, ash, clinker, cement, grain, etc.
Widely used in construction, chemical, power, metallurgy, coal and CZPT industries, etc.

Application: 

Industrial pipe auger spiral flexible screw elevator/conveyor for sugar, flour, coffee, powder is widely used in chemical, metallurgy, paper making, and construction industries. The equipment is mainly suitable for field flowing work, such as concrete mixing station, bulk material transit storage, etc. 

AdvantagePerformance and Features:

It can be sealed to prevent the escape of dust or fumes from inside the conveyor; or prevent dust contamination from outside the conveyor.
It can be used to control the flow of material in processing operations which depend upon accurate batching
It can be utilized in the horizontal, vertical or any inclined position depending upon the characteristics of the product being conveyed.
It can be used as a mixer or agitator to blend dry or fluid ingredients, provide crystallization or coagulant action, or maintain solutions in suspension.
Screw conveyors can have multiple conveyor outlets, making discharge to multiple outlets cost effective.
It can be jacketed to serve as a drier or cooler by running hot or cold water through the jacket.
It can be made out of a variety of materials to resist corrosion, abrasion or heat, depending upon the product being conveyed.
It can be outfitted with multiple inlet and discharge points.

Working Principle:

The screw conveyor consists of power device, gear box, coupling, screw axis and hanging bearing. The screw axis is made of several sections which connected with spline. Hence, the conveyor hold large load capacity and convenient to dismounting. It is open a besel on the casing to ensure a safe operation.
The material moves along the spiral within the tube. The unique action of the flexible spiral conveyor eliminates the risk of the product separation that can take place in conventional pneumatic conveying systems where mixed materials have components of different densities and particle size.
Information Needed For The Quotation
Primary considerations for the selection of a screw conveyor are as follow:
Type and condition of the materials to be handled, including maximum particle size, and, if available, the specific bulk density of the material to be conveyed.
Quantity of transported material, expressed in pounds or tons per hour.
The distance for which the material is to be conveyed.
Below is the necessary information for the selection of a screw conveyor system, presented in a series of 5 steps. These steps are arranged in logical order, and are divided into separate sections for simplicity.The 5 steps are:
Establishing the characteristics of the material to be conveyed.
Locating conveyor capacity (conveyor size and speed) on capacity tables.
Selection of conveyor components.
Calculation of required horsepower.
Checking of components torque capacities (including selection of shaft types and sizes)
 
Maintenance

General Inspection:
Routine periodic inspection of the entire conveyor must be established to ensure continuous maximum operating performance. Keep the area around the conveyor and its drive clean and free of obstacles to provide easy access and avoid functional interference of components.
Power Lock Out:
Lock out power to the motor before attempting any maintenance. Use a padlock and tag on the drive’s controls. Do not remove padlock or tag, nor operate conveyor, until all covers and guards are securely in place.
Removing Screw Sections:
Screw sections are typically removed starting with the end opposite the drive when necessary. Remove trough end, screw sections, coupling shafts, and hangers until damaged or worn section is removed. Reassemble conveyor in reverse order.
Coupling Bolts:
Periodically remove and inspect 1 of the drive shaft coupling bolts for damage or wear. Also inspect the coupling bolt hole. The drive shaft coupling bolts transmit more power than successive coupling bolts and will typically indicate the greatest wear. An accurate torque wrench should always be used when tightening coupling bolts. Excessive torque will stretch the bolt and significantly compromise its strength.
Lubrication:
Lubricate end bearings, hanger bearings and drive components at the frequency and quantity specified by the individual component’s manufacturer. Most types of hanger bearings require lubrication and wear is reduced significantly with a frequent lubrication schedule. Frequency of schedule depends on temperature, type of bearings, type of lubrication, product conveyed, trough load, screw weight, etc.)
Screw Bushings/Internal Collars:
The bushing at each end of a screw will wear over time. When possible, check for excessive shaft movement that indicates bushings need to be replaced. Longer and heavier screws typically have greater bushing wear.

Technical Parameters:
 

Model Screw Diameter Screw Rotation Speed Inclination Angle Conveyor Length
(mm) (r/min) (degree) (m)
GX 200 200 20, 30, 35, 45, 60,
75, 90, 120, 150, 190
< 20° 3~70
GX 250 250
GX 300 300
GX 400 400
GX 500 500
GX 600 600

Introduction of company

ZheJiang Xihu (West Lake) Dis.an Mining Machinery Co., Ltd is a professional manufacturer of screening equipment, conveying machinery and vibrating feeder etc. The company locates in HangZhou, covering above 60 thousand square meters. Since established in 1960s, the company has been taking the scientific management method of the modern enterprise, producing with advanced production technology and considerate service and developing to a promising pearl of the mechanical industry in China. 

Certificate

 

What Are the Advantages of a Splined Shaft?

If you are looking for the right splined shaft for your machine, you should know a few important things. First, what type of material should be used? Stainless steel is usually the most appropriate choice, because of its ability to offer low noise and fatigue failure. Secondly, it can be machined using a slotting or shaping machine. Lastly, it will ensure smooth motion. So, what are the advantages of a splined shaft?
Stainless steel is the best material for splined shafts

When choosing a splined shaft, you should consider its hardness, quality, and finish. Stainless steel has superior corrosion and wear resistance. Carbon steel is another good material for splined shafts. Carbon steel has a shallow carbon content (about 1.7%), which makes it more malleable and helps ensure smooth motion. But if you’re not willing to spend the money on stainless steel, consider other options.
There are 2 main types of splines: parallel splines and crowned splines. Involute splines have parallel grooves and allow linear and rotary motion. Helical splines have involute teeth and are oriented at an angle. This type allows for many teeth on the shaft and minimizes the stress concentration in the stationary joint.
Large evenly spaced splines are widely used in hydraulic systems, drivetrains, and machine tools. They are typically made from carbon steel (CR10) and stainless steel (AISI 304). This material is durable and meets the requirements of ISO 14-B, formerly DIN 5463-B. Splined shafts are typically made of stainless steel or C45 steel, though there are many other materials available.
Stainless steel is the best material for a splined shaft. This metal is also incredibly affordable. In most cases, stainless steel is the best choice for these shafts because it offers the best corrosion resistance. There are many different types of splined shafts, and each 1 is suited for a particular application. There are also many different types of stainless steel, so choose stainless steel if you want the best quality.
For those looking for high-quality splined shafts, CZPT Spline Shafts offer many benefits. They can reduce costs, improve positional accuracy, and reduce friction. With the CZPT TFE coating, splined shafts can reduce energy and heat buildup, and extend the life of your products. And, they’re easy to install – all you need to do is install them.
splineshaft

They provide low noise, low wear and fatigue failure

The splines in a splined shaft are composed of 2 main parts: the spline root fillet and the spline relief. The spline root fillet is the most critical part, because fatigue failure starts there and propagates to the relief. The spline relief is more susceptible to fatigue failure because of its involute tooth shape, which offers a lower stress to the shaft and has a smaller area of contact.
The fatigue life of splined shafts is determined by measuring the S-N curve. This is also known as the Wohler curve, and it is the relationship between stress amplitude and number of cycles. It depends on the material, geometry and way of loading. It can be obtained from a physical test on a uniform material specimen under a constant amplitude load. Approximations for low-alloy steel parts can be made using a lower-alloy steel material.
Splined shafts provide low noise, minimal wear and fatigue failure. However, some mechanical transmission elements need to be removed from the shaft during assembly and manufacturing processes. The shafts must still be capable of relative axial movement for functional purposes. As such, good spline joints are essential to high-quality torque transmission, minimal backlash, and low noise. The major failure modes of spline shafts include fretting corrosion, tooth breakage, and fatigue failure.
The outer disc carrier spline is susceptible to tensile stress and fatigue failure. High customer demands for low noise and low wear and fatigue failure makes splined shafts an excellent choice. A fractured spline gear coupling was received for analysis. It was installed near the top of a filter shaft and inserted into the gearbox motor. The service history was unknown. The fractured spline gear coupling had longitudinally cracked and arrested at the termination of the spline gear teeth. The spline gear teeth also exhibited wear and deformation.
A new spline coupling method detects fault propagation in hollow cylindrical splined shafts. A spline coupling is fabricated using an AE method with the spline section unrolled into a metal plate of the same thickness as the cylinder wall. In addition, the spline coupling is misaligned, which puts significant concentration on the spline teeth. This further accelerates the rate of fretting fatigue and wear.
A spline joint should be lubricated after 25 hours of operation. Frequent lubrication can increase maintenance costs and cause downtime. Moreover, the lubricant may retain abrasive particles at the interfaces. In some cases, lubricants can even cause misalignment, leading to premature failure. So, the lubrication of a spline coupling is vital in ensuring proper functioning of the shaft.
The design of a spline coupling can be optimized to enhance its wear resistance and reliability. Surface treatments, loads, and rotation affect the friction properties of a spline coupling. In addition, a finite element method was developed to predict wear of a floating spline coupling. This method is feasible and provides a reliable basis for predicting the wear and fatigue life of a spline coupling.
splineshaft

They can be machined using a slotting or shaping machine

Machines can be used to shape splined shafts in a variety of industries. They are useful in many applications, including gearboxes, braking systems, and axles. A slotted shaft can be manipulated in several ways, including hobbling, broaching, and slotting. In addition to shaping, splines are also useful in reducing bar diameter.
When using a slotting or shaping machine, the workpiece is held against a pedestal that has a uniform thickness. The machine is equipped with a stand column and limiting column (Figure 1), each positioned perpendicular to the upper surface of the pedestal. The limiting column axis is located on the same line as the stand column. During the slotting or shaping process, the tool is fed in and out until the desired space is achieved.
One process involves cutting splines into a shaft. Straddle milling, spline shaping, and spline cutting are 2 common processes used to create splined shafts. Straddle milling involves a fixed indexing fixture that holds the shaft steady, while rotating milling cutters cut the groove in the length of the shaft. Several passes are required to ensure uniformity throughout the spline.
Splines are a type of gear. The ridges or teeth on the drive shaft mesh with grooves in the mating piece. A splined shaft allows the transmission of torque to a mate piece while maximizing the power transfer. Splines are used in heavy vehicles, construction, agriculture, and massive earthmoving machinery. Splines are used in virtually every type of rotary motion, from axles to transmission systems. They also offer better fatigue life and reliability.
Slotting or shaping machines can also be used to shape splined shafts. Slotting machines are often used to machine splined shafts, because it is easier to make them with these machines. Using a slotting or shaping machine can result in splined shafts of different sizes. It is important to follow a set of spline standards to ensure your parts are manufactured to the highest standards.
A milling machine is another option for producing splined shafts. A spline shaft can be set up between 2 centers in an indexing fixture. Two side milling cutters are mounted on an arbor and a spacer and shims are inserted between them. The arbor and cutters are then mounted to a milling machine spindle. To make sure the cutters center themselves over the splined shaft, an adjustment must be made to the spindle of the machine.
The machining process is very different for internal and external splines. External splines can be broached, shaped, milled, or hobbed, while internal splines cannot. These machines use hard alloy, but they are not as good for internal splines. A machine with a slotting mechanism is necessary for these operations.

China manufacturer Industrial CZPT Auger Spiral Flexible Screw Elevator Conveyor     with Free Design CustomChina manufacturer Industrial CZPT Auger Spiral Flexible Screw Elevator Conveyor     with Free Design Custom

China Good quality Horizontal/ Inclined Screw Spiral Conveyor near me shop

Product Description

Screw Conveyor/ Spiral Conveyor/ Auger Conveyor (LSY Series)

Brief Introduction

1. Screw conveyor is widely used for transporting powdery, granular, and bulk material. It mainly consists of tube (head/trail/hanging bearings, conveying spiral, housing, cover plate and base plate), inlet and outlet chutes, as well as driving device (electric motor, gearbox, coupling and base plate).

2. We provide 3 kinds of screw conveyors.
—GX series screw conveyor: 150/200/250/300/400/500/700mm screw diameter, with length from 3 to 70m, inclination angle below 20 degree.
—LSY series screw conveyor: 90/115/135/163/185/237/285/362mm screw diameter, with length up to 22m, inclination angle below 60 degree.
—LS series screw conveyor: 100/160/200/250/315/400/500/630/800/1000/1250mm screw conveyor, with length up to 70m, inclination angle below 20 degree.

Application Scope

1. Chemical, metallurgical, paper making, construction industries, etc.
2. Cement, concrete, coal dust, carbon black, soda ash, flour, grain, paper pulp, etc.
3. Specially suitable for field flowing work, such as concrete mixing station, bulk material transit storage, etc.

Characteristics and Performance

1. It has the features of simple structure, good sealing, large capacity, easy operation and low power invest cost.
2. Working temperature is -20~50 degree, with material temperature below 200 degree.
3. Axle head and conveying spiral adopt spline connection, with features of convenient mounting&disassembling, large load capacity and stability.
4. All sections of screw conveyor are connected with flange. Also screw blades are integral connection.
5. Inlet and outlet chutes have many kinds of connections, such as flange, sack, universal joint, etc.
6. ISO9001: 2008, CE certificate, SGS report

Model  Screw  Diameter Screw  Rotation  Speed Housing  Diameter Max.   Capacity Max.   Length Operation  Working  Angle  Power 
L≤ 7m L> 7m
(mm) (r/min) (mm) (t/h) (m) (° ) (kw)
LSY  100 90 300 108 7 8 0° ~60° 1.1 2.2
LSY  120 115 300 133 10 10 2.2 3
LSY  140 135 300 159 15 12 3 4
LSY  160 163 308 194 25 15 5.5 7.5
LSY  200 185 260 219 40 18 7.5 11
LSY  250 237 200 273 60 25 11 15
LSY  300 285 170 325 90 25 18.5 22
LSY  400 362 170 402 120 25 18.5 22

Factory picture

 

The Different Types of Splines in a Splined Shaft

A splined shaft is a machine component with internal and external splines. The splines are formed in 4 different ways: Involute, Parallel, Serrated, and Ball. You can learn more about each type of spline in this article. When choosing a splined shaft, be sure to choose the right 1 for your application. Read on to learn about the different types of splines and how they affect the shaft’s performance.
splineshaft

Involute splines

Involute splines in a splined shaft are used to secure and extend mechanical assemblies. They are smooth, inwardly curving grooves that resist separation during operation. A shaft with involute splines is often longer than the shaft itself. This feature allows for more axial movement. This is beneficial for many applications, especially in a gearbox.
The involute spline is a shaped spline, similar to a parallel spline. It is angled and consists of teeth that create a spiral pattern that enables linear and rotatory motion. It is distinguished from other splines by the serrations on its flanks. It also has a flat top. It is a good option for couplers and other applications where angular movement is necessary.
Involute splines are also called involute teeth because of their shape. They are flat on the top and curved on the sides. These teeth can be either internal or external. As a result, involute splines provide greater surface contact, which helps reduce stress and fatigue. Regardless of the shape, involute splines are generally easy to machine and fit.
Involute splines are a type of splines that are used in splined shafts. These splines have different names, depending on their diameters. An example set of designations is for a 32-tooth male spline, a 2,500-tooth module, and a 30 degree pressure angle. An example of a female spline, a fillet root spline, is used to describe the diameter of the splined shaft.
The effective tooth thickness of splines is dependent on the number of keyways and the type of spline. Involute splines in splined shafts should be designed to engage 25 to 50 percent of the spline teeth during the coupling. Involute splines should be able to withstand the load without cracking.

Parallel splines

Parallel splines are formed on a splined shaft by putting 1 or more teeth into another. The male spline is positioned at the center of the female spline. The teeth of the male spline are also parallel to the shaft axis, but a common misalignment causes the splines to roll and tilt. This is common in many industrial applications, and there are a number of ways to improve the performance of splines.
Typically, parallel splines are used to reduce friction in a rotating part. The splines on a splined shaft are narrower on the end face than the interior, which makes them more prone to wear. This type of spline is used in a variety of industries, such as machinery, and it also allows for greater efficiency when transmitting torque.
Involute splines on a splined shaft are the most common. They have equally spaced teeth, and are therefore less likely to crack due to fatigue. They also tend to be easy to cut and fit. However, they are not the best type of spline. It is important to understand the difference between parallel and involute splines before deciding on which spline to use.
The difference between splined and involute splines is the size of the grooves. Involute splines are generally larger than parallel splines. These types of splines provide more torque to the gear teeth and reduce stress during operation. They are also more durable and have a longer life span. And because they are used on farm machinery, they are essential in this type of application.
splineshaft

Serrated splines

A Serrated Splined Shaft has several advantages. This type of shaft is highly adjustable. Its large number of teeth allows large torques, and its shorter tooth width allows for greater adjustment. These features make this type of shaft an ideal choice for applications where accuracy is critical. Listed below are some of the benefits of this type of shaft. These benefits are just a few of the advantages. Learn more about this type of shaft.
The process of hobbing is inexpensive and highly accurate. It is useful for external spline shafts, but is not suitable for internal splines. This type of process forms synchronized shapes on the shaft, reducing the manufacturing cycle and stabilizing the relative phase between spline and thread. It uses a grinding wheel to shape the shaft. CZPT Manufacturing has a large inventory of Serrated Splined Shafts.
The teeth of a Serrated Splined Shaft are designed to engage with the hub over the entire circumference of the shaft. The teeth of the shaft are spaced uniformly around the spline, creating a multiple-tooth point of contact over the entire length of the shaft. The results of these analyses are usually satisfactory. But there are some limitations. To begin with, the splines of the Serrated Splined Shaft should be chosen carefully. If the application requires large-scale analysis, it may be necessary to modify the design.
The splines of the Serrated Splined Shaft are also used for other purposes. They can be used to transmit torque to another device. They also act as an anti-rotational device and function as a linear guide. Both the design and the type of splines determine the function of the Splined Shaft. In the automobile industry, they are used in vehicles, aerospace, earth-moving machinery, and many other industries.

Ball splines

The invention relates to a ball-spinned shaft. The shaft comprises a plurality of balls that are arranged in a series and are operatively coupled to a load path section. The balls are capable of rolling endlessly along the path. This invention also relates to a ball bearing. Here, a ball bearing is 1 of the many types of gears. The following discussion describes the features of a ball bearing.
A ball-splined shaft assembly comprises a shaft with at least 1 ball-spline groove and a plurality of circumferential step grooves. The shaft is held in a first holding means that extends longitudinally and is rotatably held by a second holding means. Both the shaft and the first holding means are driven relative to 1 another by a first driving means. It is possible to manufacture a ball-splined shaft in a variety of ways.
A ball-splined shaft features a nut with recirculating balls. The ball-splined nut rides in these grooves to provide linear motion while preventing rotation. A splined shaft with a nut that has recirculating balls can also provide rotary motion. A ball splined shaft also has higher load capacities than a ball bushing. For these reasons, ball splines are an excellent choice for many applications.
In this invention, a pair of ball-spinned shafts are housed in a box under a carrier device 40. Each of the 2 shafts extends along a longitudinal line of arm 50. One end of each shaft is supported rotatably by a slide block 56. The slide block also has a support arm 58 that supports the center arm 50 in a cantilever fashion.
splineshaft

Sector no-go gage

A no-go gauge is a tool that checks the splined shaft for oversize. It is an effective way to determine the oversize condition of a splined shaft without removing the shaft. It measures external splines and serrations. The no-go gage is available in sizes ranging from 19mm to 130mm with a 25mm profile length.
The sector no-go gage has 2 groups of diametrally opposed teeth. The space between them is manufactured to a maximum space width and the tooth thickness must be within a predetermined tolerance. This gage would be out of tolerance if the splines were measured with a pin. The dimensions of this splined shaft can be found in the respective ANSI or DIN standards.
The go-no-go gage is useful for final inspection of thread pitch diameter. It is also useful for splined shafts and threaded nuts. The thread of a screw must match the contour of the go-no-go gage head to avoid a no-go condition. There is no substitute for a quality machine. It is an essential tool for any splined shaft and fastener manufacturer.
The NO-GO gage can detect changes in tooth thickness. It can be calibrated under ISO17025 standards and has many advantages over a non-go gage. It also gives a visual reference of the thickness of a splined shaft. When the teeth match, the shaft is considered ready for installation. It is a critical process. In some cases, it is impossible to determine the precise length of the shaft spline.
The 45-degree pressure angle is most commonly used for axles and torque-delivering members. This pressure angle is the most economical in terms of tool life, but the splines will not roll neatly like a 30 degree angle. The 45-degree spline is more likely to fall off larger than the other two. Oftentimes, it will also have a crowned look. The 37.5 degree pressure angle is a compromise between the other 2 pressure angles. It is often used when the splined shaft material is harder than usual.

China Good quality Horizontal/ Inclined Screw Spiral Conveyor     near me shop China Good quality Horizontal/ Inclined Screw Spiral Conveyor     near me shop